Everything looks promising in the world of bots: big players are pushing platforms to build them (Google, Amazon, Facebook, Microsoft, IBM, Apple), large retail companies are adopting them (Starbucks, Domino’s, British Airways), press is excited about movies becoming a reality; and we users are eager to use. However, one dark hole remains in this scenario. The bot development process.
Conversational bot development takes time, and the final delivery of a bot with proper understanding is not guaranteed. This happens because creating a bot relies on manual work, and that is time-consuming and error-prone. We end up with expensive projects that are hard to monetize and unhappy customers that feel disengaged.
One of the key areas in bot development is bot training or making the bot understand user requests to be able to match them to answers accurately.
The training involves feeding the bot with different variations of what the bot users may say, and hand tagging the relevant information or entities. For example, if you take the sentence “turn on the lights in your kitchen” it can be asked in different ways:
turn on the lights in the kitchen
turn on the kitchen lights
I’d like to turn on the lights in the kitchen
can you turn on the kitchen lights?
please, turn on the kitchen lights
For each sentence, we will have to hand tag “turn on” as the action to be performed, “lights” as an object, and “kitchen” as a place.
Bitext NLP middleware for bot training automates the process of corpus creation and collection and the manual coding of the hundreds of sentences your Machine Learning Algorithm needs to train your chatbot.
We combine our Natural Language Generation solution to automatically expand a sample sentence into hundreds of variations while using our Slot generation technology the sentence is automatically tagged with the relevant intents and entities.
enable the alarm
enable the alarm, please
can you enable the alarm?
i want to enable the alarm….
3. Step three, automatically tag the sentences
{“intent”: “enable”,
“object”: “alarm”
“polarity”: “affirmative”, }
The resulting tagged corpus is directly importable every major bot training platform like Api.ai, Wit.ai, LUIS, Lex, Watson, and other Machine Learning powered systems.
Through the described process Bitext NLP middleware for bot training reduces bot development times from months to weeks and can be integrated with existing bots to expand their levels of understanding quickly.
Bitext works in improving the understanding between humans and machines and having great conversational bots that engage with users is fundamental.
We believe that the best way to achieve maturity in the bot market is with short and transparent bot development cycles that deliver great results and have a positive impact on revenue from day one of deployment.
If you want to know more or if you have any questions for us make sure to contact us here:
A robust discussion persists within the technical and academic communities about the suitability of LLMs…
Chinese, Southeast Asian, and Arabic names require transliteration, often resulting in inconsistent spellings in Roman…
Customizing Large Language Models in 2 steps via fine-tuning is a very efficient way to…
Discover the advantages of using symbolic approaches over traditional data generation techniques in GenAI. Learn…
In the blog "General Purpose Models vs. Verticalized Enterprise GenAI," the focus is on the…
Bitext introduced the Copilot, a natural language interface that replaces static forms with a conversational,…